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1 Introduction

The possibility of modifying general relativity at large distances is both theoretically fasci-
nating and of potentially great import for cosmology. The theoretical challenge stems from
decades of negative results about the very possibility of changing the long distance behavior
of gravity. Various roadblocks stand in the way of such a modification. The first is the
celebrated van Dam-Veltman-Zakharov discontinuity [1], which is due to the fact that in
flat space a massive spin-2 field propagates a zero helicity state. In the massless limit, that
helicity becomes a scalar that couples with gravitational strength to the trace of the stress-
energy tensor of matter. Such coupling changes the GR prediction of, say, the bending of
light by massive objects by a finite amount incompatible with experiment. This is to say
that the massless limit of a theory of massive gravity is not GR but rather a Brans-Dicke
theory with Brans-Dicke parameter ω = O(1). Current solar-system observations imply
ω > 40, 000. More theoretical but potentially worse problems are the existence of ghosts
around Schwarzschild-like solutions [3], the absence of a lower bound on the energy of small
fluctuations around generic backgrounds [4], and the existence of an extra propagating de-
gree of freedom, beyond linear order, in generic nontrivial backgrounds (also in [4]). All
these problems are related, and call for a more sophisticated way of changing gravity at large
distances. The DGP model [5] provides at least in part a cure for some of the problems just
mentioned. In DGP, gravity is four dimensional below a certain distance L, and five dimen-
sional above L. This distance is given by the ratio of the 5D Newton’s constant over the 4D
Newton’s constant, L = G5/G4.1 Thus, the familiar r−2 behavior of Newton’s law becomes
a weaker r−3 at large distances; empirically, L = O(RHubble). While still suffering [6] from

1Equivalently L = M2
4 /M

3
5 , where M4 is the 4D Planck mass while M5 is the Planck mass in 5D.
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the severe strong-coupling problem which also plagues massive gravity [7] at the quantum
level, the DGP model does not propagate ghosts on asymptotically flat backgrounds [8].
Ref. [8] also shows that the crucial aspect of the DGP dynamics, namely the decoupling of
the scalar degree of freedom around a massive source, holds in a decoupling limit in which
the 4D Planck mass M4 → ∞, while the quantum DGP scale Λ3 = (M4/L

2)1/3 is kept
constant. In this limit, gravity around a source of (fixed) Schwarzschild radius RS is in the
linear regime whenever r � RS , with the exception of a self-interacting scalar mode, π,
that couples with gravitational strength to the trace of the stress-energy tensor. The strong
self-coupling of the scalar causes it to decouple at distances r � (RSL2)1/3 [8–11], and to
propagate superluminally in the range RS � r � (RSL2)1/3 [12]. A recent work [13] shows
that this pathology of superluminality is generic in the decoupling limit.

A subtle aspect of the decoupling limit is that it washes away the non-local part of
the scalar propagator. In DGP, the degree of freedom that becomes the scalar of the
decoupling limit is one of the helicities of the graviton, whose propagator is non-local. The
DGP graviton is indeed a resonance, not a stable particle (it can decay from the 4D brane
into the 5D bulk). Equivalently, its propagator (better, its retarded Green’s function) does
not have poles on the physical sheet of the complex frequency plane, but only cuts along the
real axis. Moreover, the kinematic region of interest for studying locality is precisely that
where the non-local part of the propagator cannot be neglected. Another possible complaint
about the conclusions reached in [12, 13] is that the background on which the scalar mode
propagates is only a solution of the decoupled equations and not of the full DGP model.
Finally, in a model such as DGP in which 4D non-localities stemming from the integration
of the 5D bulk physics exist, one must exercise care in distinguishing true superluminal
propagation from non-localities introduced by an incorrect definition of the sources [14].

To respond to all these doubts, after a lightning review of the DGP equations in section
2, we will review some of its exact solutions in section 3; the time independent ones of [6] and
the time-dependent ones of [17]. In particular, we compute the kinetic term of the scalar
DGP mode, π, in the backgrounds found earlier. From that computation we find a speed
of propagation of signals cπ greater than c, thereby confirming the results of [8]. Section 4
is devoted to studying the issue of non-locality of π and of a proper definition of its sources.
To be sure that π indeed propagates superluminally, we study its retarded Green’s func-
tion without resorting to the local approximation. Our analysis confirms that the Green’s
function is indeed nonzero inside an enlarged light cone, determined by cπ. Equally impor-
tantly, we find that the Green’s function does not have instabilities growing exponentially
in time, in accordance with the analysis done in the decoupling (or local) limit.

In sections 3 we tackle a different problem. We examine whether a range of parameters
exists, for which the DGP model admits only solutions without superluminal propagation of
signals. In other words, we try to use special-relativity causality to constrain the parameter
space of DGP. We find that, at least in the case that the 4D brane energy is a pure cosmo-
logical constant, no range of parameter is safe. This may point to an upper bound on L (the
DGP length scale) or on the horizon radius in any relativistically invariant, causal comple-
tion of the model, such as those provided by D-brane or other constructions in string theory.

– 2 –
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2 The model, and our goal

DGP is a 5D model where gravity propagates throughout an infinite 5D bulk, and matter
fields are confined to a 4D boundary. The action for gravity at lowest order in the derivative
expansion is a bulk Einstein-Hilbert term and a boundary one, generically with two different
Planck masses M5, M4 (plus a suitable Gibbons-Hawking term). Even if we set the grav-
itational boundary action to zero at tree-level, matter loops will generically generate a lo-
calized 4D Einstein-Hilbert term. The phenomenologically interesting regime is M5 �M4.

The DGP equations are the Einstein equations in the bulk,2

G
(5)
MN = 0 , (2.1)

along with the Israel junction conditions on the brane (with Z2 symmetry across the brane),

M2
4Gµν − 2M3

5 (Kµν − gµνK) = Tµν (2.2)

(a boundary is equivalent to a brane with Z2 symmetry). Kµν is computed with the
normal vector pointing into the bulk. Note that we still have ∇µTµν = 0, by virtue of
∇µ (Kµν − gµνK) = 0, coming from the momentum constraint implicit in (2.1).

Ref. [6] studied small fluctuations about a generic curved solution ḡMN . Since the
stress-energy tensor is localized on the boundary, it is interesting to ‘integrate out’ the
bulk modes and rewrite the theory as a 4D theory. Namely, one can solve the linearized 5D
Einstein equations for given sources and given 4D boundary conditions, plug the solution
back into the action, and thus get an effective four dimensional action that only involves
the sources and the 4D field configuration on the boundary. The downside of doing so is
that such an effective action is non-local, because massless degrees of freedom have been
integrated out. Remarkably, at short-distances the effective action is approximately local
— hence the statement that in the model gravity looks four-dimensional at short distances.
Indeed the resulting quadratic action for small fluctuations at distances much shorter than
the solution’s curvature radius and than the critical DGP length-scale is [6]

S4D
eff '

∫
d4x
√
−ḡ
[
M2

4

(
1
2
hµν �̄hµν −

1
4
h �̄h

)
+

1
2
hµν δT

µν

+3m2M2
4π�̄π+2mM2

4π
(
K̄µν − ḡµνK̄

)
∇̄µ∇̄νπ+

1
2
mπδTµµ

]
, (2.3)

where m ≡ 1/LDGP = 2M3
5 /M

2
4 is the DGP mass scale, all ‘barred’ quantities are computed

on the solution ḡµν , and we are implicitly assuming de Donder gauge for hµν : ∇̄µ(hµν −
1
2 ḡµν h) = 0. π is a scalar degree of freedom, which can be thought of as a ‘brane bending’
mode. Indeed in one gauge it measures fluctuations in the position of the brane along the
fifth dimension. In another gauge it is a component of the five-dimensional metric. The
gauge-invariant, physical statement is that it couples directly to Tµν , and thus mediates a

2We are using the mostly plus signature for the metric. Also we define the D-dimensional Planck mass

as MD−2
D = 1/8πGD.
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physically measurable force.3 The non-local contributions alluded to above, are corrections
to the above action schematically of the form

M2
4mh

√
−�̄h , M2

4m
3 π
√
−�̄π . (2.4)

At high momenta, ∂ � m, their effect is negligible with respect to the local kinetic terms
we explicitly kept. For the moment, we will concentrate on the local part of the quadratic
action, and come back to the interpretation (and a more careful definition) of these non-
localities in section 4.

We see that the π kinetic action — thus its propagator — depends on the extrinsic
curvature of the solution. In the following, we will look for 5D background solutions where
this extrinsic curvature correction makes π excitations superluminal while keeping their
energy positive. That is, we will look for stable solutions with superluminal excitations.

An important remark is in order. One might think that, even if we find superluminal
excitations of curved solutions, these excitations will simply correspond to signals connect-
ing two points A and B on the curved boundary by taking a straight shortcut through
the bulk. In this case our 4D superluminality would be fake — no signal would exit the
true 5D light-cone. This however cannot be the case, for two reasons. First, the extrinsic
curvature correction to π’s kinetic action above is local : it can give a finite shift in the
local propagation velocity of π, for arbitrarily close A and B. The shortcut effect, instead,
is only efficient for A and B far from each other, so that the curvature of the boundary
becomes visible. The shortcut fractional correction to the average velocity goes to zero if
we bring A and B closer and closer. In other words, a shortcut effect would correspond to
a non-local term in the effective 4D Lagrangian. Second, linear π excitations correspond to
pure gauge deformations of the bulk geometry [6]. Therefore, when we excite π no physical
information is traveling through the bulk. We can choose a gauge such that the bulk is
unperturbed, and the geometric excitation is manifestly localized on the boundary.

3 Stable solutions with superluminal π

In order to (a) find bulk solutions, and (b) study the kinetic action for π about them, it
is convenient to focus on configurations with a high degree of symmetry. One possibility
is to consider spatially flat cosmological solutions, for which the bulk geometry is exactly
flat. There, however, one can show that imposing the null energy condition (NEC) for
Tµν and stability under π fluctuations, automatically implies sub-luminality of π [16]. The
next-to-simplest possibility is solutions that are spherically symmetric (in five dimensions),
with the brane curled up as a 3-sphere. In such a case, Birkhoff’s theorem forces the bulk
metric to be static, and of the 5D Schwarzschild form:

ds2
(5) = −f2(r)dt2 +

1
f2(r)

dr2 + r2dΩ2
3 , f(r) =

√
1− µ

r2
(3.1)

3To get to (2.3), π has been demixed from the metric perturbation hµν [6]. This is the origin of

the coupling πTµµ. Equivalently, matter couples universally to the ‘Jordan-frame’ metric perturbation

ĥµν = hµν +mπ ḡµν .

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
9

(here and in the following we use f2 to denote what is usually called f). The parameter µ
is related to the solution’s 5D ADM mass by

MADM = 3π2M3
5µ . (3.2)

3.1 Time independent spherical solutions

We first look for solutions with a static spherical brane located at some fixed value of r.
This case has been considered in [6]. From the 4D viewpoint, the brane is a static Einstein
Universe. The 4D induced metric is

gµνdx
µdxν = −f2(r)dt2 + r2dΩ2

3 , (3.3)

and the extrinsic curvature is
Kµν =

1
2
f ∂rgµν . (3.4)

We have chosen the bulk to lie outside the brane, so that it is asymptotically flat and free
of horizons and singularities. Then the DGP equations (2.2) read [6]

1
(mr)2

− f

mr
=

1
3M2

4m
2
ρ, (3.5)

1
(mr)2

− 1
mr

(
f +

1
f

)
= − 1

M2
4m

2
p, (3.6)

where m ≡ 2M3
5 /M

2
4 is the DGP mass parameter, r is the brane position, f is computed at

r, and ρ and p are the 4D energy density and pressure. Note that the energy-momentum
conservation equation is trivial in this time-independent case, so we must use both the
space-space and time-time components of the Einstein equations.

At short distances the quadratic π action (2.3) is

Lπ 'M2
4

[
3m2 π�π + 2mπ(Kµν − gµνK)∇µ∇νπ

]
, (3.7)

so the new kinetic matrix is proportional to

3m2gµν + 2m(Kµν − gµνK) = 3m2diag
(
−
[
1− 2f

mr

]
f2;
[
1− 2

3mr
(f + 1/f)

]
gij

)
. (3.8)

If π is to have positive kinetic and gradient energies, we want both terms in brackets to be
positive. For π to be subluminal, we want the second bracket to be smaller than the first.
Indeed, the speed of π excitations as measured in a local Minkowskian frame at rest with
respect to the brane is

c2
π =

1− 2
3mr (f + 1/f)

1− 2f
mr

, (3.9)

as can be seen by locally going to Riemann normal coordinates x̂µ,

dt̂2 = f2dt2 , d~̂x
2

= gijdx
idxj = r2dΩ2

3 . (3.10)

– 5 –
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Specialize now to the case of a pure cosmological constant on the brane, p = −ρ. From
equating (3.5) and (3.6) we find

2
(mr)2

+
1
mr

(
1
f
− 2f

)
= 0. (3.11)

Given any value mr > 0, this determines f , thus m2µ. The cosmological constant ρ
M2

4m
2 is

then determined through either (3.5) or (3.6). Thus, there is a single parameter family of
possible static solutions, one for each r > 0.

The 5D mass µ is positive only for mr > 2. We want µ to be positive, otherwise
the solution’s 5D mass would be negative, thus signaling an instability against acceler-
ating away. The cosmological constant is always negative, ranging monotonically from
−3/2m2M2

4 to 0 as r ranges from 0 to ∞. Notice that the brane always lies outside the
would-be Schwarzschild horizon.

Figure 1 shows the stability and superluminality of the solutions. The π mode has
ghostlike (negative kinetic energy) and/or tachyonic (negative gradient energy) instabil-
ities for mr < 2, corresponding to µ < 0. It becomes stable thereafter, but is always
superluminal. This means that in DGP, for values of the brane cosmological constant in
the range −3/2m2M2

4 < ρ < 0, there exists a solution which can not be thrown out on
stability grounds, which nevertheless supports superluminal propagation. As r → ∞, the
kinetic and gradient coefficients approach 1 from below, and the speed of π approaches 1
from above. Figure 2 plots the 4D energy density ρ vs. the brane position r.

3.2 Time dependent spherical solutions

By studying static spherical solutions, we have seen that for a finite range of negative values
of the brane cosmological constant, −3/2m2M2

4 < ρ < 0, there exist stable superluminal
solutions. To obtain information about other values of the brane cosmological constant, we
now search for brane solutions that are still spherical, but with a time dependent radius
r = a(t). For a 4D observer, these solutions describe a cosmology with positive spatial
curvature. These backgrounds have been studied with somewhat different methods first
in [15] and subsequently in [17] . Here we will study the stability and speed of propagation
of their fluctuations.

To start, take coordinates t, θi as brane coordinates. θi, i = 1 . . . 3, are the angles for
the three-sphere. The embedding is then

t = t, r = a(t), θi = θi. (3.12)

The induced metric is

ds2 = −

[
f2 − 1

f2

(
da

dt

)2
]
dt2 + a(t)2dΩ2

3. (3.13)

Note that the term in brackets in front of dt2 should be positive, to ensure that the brane
is time-like. This requires

∣∣da
dt

∣∣ < f2, i.e. that the brane not be expanding or contracting
as fast or faster than the speed of light in the bulk.

– 6 –
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Figure 1. Stability and superluminality of static solutions. The thick black curve is the one-
parameter family of solutions discussed in the text. The upper-left white region is where the brane
is inside the Schwarzschild horizon — and of course there is no static solution there.

Figure 2. ρ as a function of r for static solutions.
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The tangent vectors to the brane are eAµ = ∂XA

∂yµ , where XA are the 5D embedding
coordinates, and ya are the brane coordiantes. We have,

eAt =
(

1,
da

dt
, 0, 0, 0

)
, (3.14)

eAθi = (0, 0, êi). (3.15)

The normal vector nA is orthogonal to all of these, is spacelike, and is normalized, i.e.
gAB e

A
µn

B = 0, gAB nAnB = 1.

nA =
1

f

√
−
(
da
dt

)2
+ f4

(
da

dt
, f4, 0, 0, 0

)
. (3.16)

Again, the bulk is taken to be outside.
The extrinsic curvature can be calculated using Kµν = eAµe

B
ν∇AnB = eAµ∂νnA −

eAµe
B
νΓCABnC ,

Kµν = − 1√
−
(
da
dt

)2
+f4

(
f4f ′ − 3f ′

(
da

dt

)2

+f
d2a

dt2

)
dt2+

af3√
−
(
da
dt

)2
+f4

dΩ2
(3). (3.17)

Here f ′ = df
da .

We want to bring the induced metric into FRW form. To do this, define a new time
coordinate τ(t) on the brane by solving

(
dτ

dt

)2

= f2 − 1
f2

(
da

dt

)2

⇒ dt

dτ
=

1
f2

√
f2 +

(
da

dτ

)2

. (3.18)

The embedding is now
t = t(τ) r = a(τ) , θi = θi , (3.19)

and the induced metric is
ds2 = −dτ2 + a(τ)2dΩ2

3 . (3.20)

Some quantities we will need are

G00 = 3
(
ȧ2

a2
+

1
a2

)
, (3.21)

Gij = −
(
1 + ȧ2 + 2aä

)
γij , (3.22)

Rij −
1
6
Rgij =

(
1 + ȧ2

)
γij . (3.23)

Dot means d
dτ , and γij is the metric on the unit three-sphere. The spatial part of the

extrinsic curvature, in these coordinates, reads

Kij = a
√
f2 + ȧ2γij . (3.24)

(There’s actually no need to calculate K00, we can get away without it, as we’ll see.)

– 8 –
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Trace reversing (2.2), we have

M2
4

(
Rµν −

1
6
Rgµν

)
− 2M3

5Kµν = Tµν −
1
3
Tgµν . (3.25)

Using the quantities above, the spatial components give us the Friedmann equation,(
ȧ2

a2
+

1
a2

)
− m

a

√
f2 + ȧ2 =

1
3M2

4

ρ , (3.26)

where

m =
2M3

5

M2
4

(3.27)

is the DGP scale and ρ the total 4D energy density. We also have the usual conserva-
tion equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (3.28)

which together with (3.26) determines the 00-component of (3.25). (Note that in the static
case, the conservation equation is trivial, so there we did need the 00-component of (3.25)
as well.)

We can find the on-shell value of K00 by looking at the trace of (2.2),

−M2
4R+ 6M3

5K = T = −ρ+ 3p , (3.29)

which implies

K =
1
m

[
1

3M2
4

(−ρ+ 3p) + 2
(
ȧ2

a2
+

1
a2

+
ä

a

)]
, (3.30)

K00 =
3
a

√
f2 + ȧ2 −K . (3.31)

The coefficient of the π kinetic term reads

3m2gµν + 2m(Kµν − gµνK). (3.32)

The 00-component is

− 3m2

[
1− 2

ma

√
f2 + ȧ2

]
. (3.33)

The bracket must be positive if there are to be no ghosts. The ij-components are

3m2a2γij

[
1− 2

3ma

√
f2 + ȧ2 − 2

3m2

(
ρ+ 3p
3M2

4

+ 2
ä

a

)]
. (3.34)

The bracket must be positive if there are to be no tachyons. The local speed of π is

c2
π =

1− 2
3ma

√
f2 + ȧ2 − 2

3m2

(
ρ+3p
3M2

4
+ 2 äa

)
1− 2

ma

√
f2 + ȧ2

. (3.35)

Specialize now to the case of a pure cosmological constant on the brane, −p = ρ.
Differentiating the Friedmann equation (3.26), we find an equation which can be solved for

– 9 –
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Figure 3. a, ȧ, µ parameter space.

ä in terms of lower derivatives. There is a three parameter family of solutions; we can pick
arbitrary initial data a(0) and ȧ(0), and some value for µ. The cosmological constant is
then determined by (3.26). The time derivative of (3.26) is used to evolve these initial data,
creating a trajectory in the space of independent initial data spanned by a, ȧ and µ. Note
that the initial data must also satisfy 1− µ

a2 + ȧ2 ≥ 0 because of the square root in (3.26).
Figure 3 shows the a, ȧ, µ parameter space. The plot shows the region where π is stable

and superluminal. We will try to rule out more values of the brane cosmological constant by
asking whether they support solutions which stay in this region. In addition, the solutions
must be within the effective field theory where π non-linearities can be ignored.4

We seek solutions with positive 5D energy so we restrict our attention to the region
µ > 0. The value of µ is fixed and conserved, so all the dynamics occurs within a µ = const.

plane. This plane is shown in figure 4. Also shown is the region where π is stable and
superluminal. We seek solutions that stay in this region for all times.

The Friedmann equation (3.26) gives another surface with a fixed value of ρ on which
the dynamics is confined. The intersection of these surface with the µ = const. plane then
determines the dynamical path. The time parametrization along the path is determined
through the evolution equation given by differentiating the Friedmann equation with re-

4Incidentally, the region in which π is both stable and subluminal does not intersect the region µ > 0.

This means that in this class of solutions there are none which, at any time in their history, are subluminal,

stable, and have positive energy from the 5D point of view (µ > 0).

– 10 –
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Figure 4. Examples of stable, superluminal solutions. Shown is a typical µ = const. > 0 plane.
The solution is confined to move along a ρ = const. contour, shown here as solid black lines for
two different values of ρ, with arrows indicating the direction of flow. The solutions come to a 4D
curvature singularity when ä =∞, which is exactly the boundary of the region in which π is stable
and superluminal. There is a critical value ρc = 3M2

4
2µ

(
1−

√
1 +m2µ

)
, at which the ρ = const. line

bifurcates into two pieces. The leftmost line shown is for a value ρ > ρc, and the stable superluminal
solution lives for only a finite proper time, going from singularity to singularity as it traverses the
stable superluminal region. The rightmost line is at a value ρ < ρc, and the stable superluminal
solution lives for an infinite time, extending to infinite radius. The values used for this plot are, in
units of m, µ = 1.5, ρ = ±0.6M2

4 .

spect to time and solving for ä. The evolution can in fact come to an end at points where
ä =∞. This can happen at points where a, ȧ are finite, so this represents a 4D curvature
singularity, as can be seen from the Ricci scalar R = 6

(
ä
a + ȧ2

a2 + 1
a2

)
(these are the pres-

sure singularities discussed in [17]). As it turns out, the line on which ä blows up is exactly
the border of the stable superluminal region. This means that solutions can never cross
into or out of this region.

For any value of ρ there are solutions which live out their lives in the stable superlu-
minal region. For ρ > 3M2

4
2µ

(
1−

√
1 +m2µ

)
, they come into existence out of a pressure
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singularity at one border of the stable superluminal region, travel through the region,
and then come to an end in a pressure singularity on the other side of the region. For
ρ <

3M2
4

2µ

(
1−

√
1 +m2µ

)
, the solutions have a pressure singularity in either the past or

the future. Thus, for any value of ρ, there exist solutions which cannot be thrown out on
stability grounds, and yet have superluminal propagation.

As a consistency check of our results, we want to recover the celebrated ‘self-
accelerating’ solution — a zero-tension de Sitter brane embedded in a Minkowski bulk.
Therefore, we look for an empty brane (ρ = 0) in a flat bulk (µ = 0). The Friedmann
equation (3.26) reduces to

1 + ȧ2 = ma
√

1 + ȧ2. (3.36)

Integrating the Friedmann equation yields the unique (up to time translations) solution

a(τ) =
1
m

cosh(mτ). (3.37)

Rewriting in terms of the coordinate time t, using (3.18), we obtain

a(t) =
1
m

√
1 +m2t2. (3.38)

This is the familiar self-accelerating solution, a hyperboloid in a flat bulk, where the bulk
is taken to be the outside. The hyperboloid is maximally symmetric, embedded in flat
Minkowski space, so its extrinsic curvature is proportional to the induced metric,

Kµν = mgµν , (3.39)

and the scalar kinetic matrix (3.32) becomes

3m2gµν + 2m(Kµν − gµνK) = −3m2gµν . (3.40)

Thus the extrinsic curvature corrections have the effect of reversing the sign of the kinetic
term, recovering the well known fact that π is a ghost, propagating at exactly the speed
of light [6].

4 The retarded Green’s function

We now come back to the issue of non-local corrections to the 4D effective action (2.3). In
particular, we want to determine the support of π’s retarded boundary-to-boundary Green’s
function. This is enough to study the causal response of π to local boundary sources, i.e. to
study the causality properties of the interaction between sources mediated by π. We will
see that to this purpose, the conclusions based on the local part of the action are correct.

To simplify the analysis, consider a DGP-like theory for a scalar, with a localized
superluminal (c > 1) kinetic term on the boundary:

�5π(x, y) + δ(y) �̃4π(x, y) = J(x)δ(y) , (4.1)

where
�̃4 ≡ −∂2

t + c2∇2 (4.2)
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and J(x) is the boundary source. For simplicity we are suppressing the dimensionful
constant m that sets the critical scale. So, here the critical scale is one. This example is
much simpler than DGP, but it captures the features that are relevant for our discussion.

Taking the Fourier transform in 4D, the Green’s function

G(x, y) =
∫

d4p

(2π)4
e+ip·x Ĝ(p, y) (4.3)

obeys the equation [
(p2 − ∂2

y) + δ(y)p̃2
]
Ĝ(p, y) = δ(y) , (4.4)

with
p̃2 ≡ −ω2 + c2~p 2 . (4.5)

The solution that vanishes at y → ±∞ for Euclidean four-momenta, ~p 2 > ω2, is

Ĝ(p, y) = − e−
√
~p2−ω2|y|

−ω2 + c2~p 2 + 2
√
~p 2 − ω2

. (4.6)

In the complex ω plane, for real ~p this function has branch cuts starting at ω = ±|~p|. We
define the square root in such a way that the branch cuts run along the real axis from the
branch points to ω = ±∞, respectively. This corresponds to setting the branch cut of

√
z

along the negative real z-axis:√
ρ eiα ≡ √ρ eiα/2 , for − π < α < π (4.7)

Ĝ(p, y) has poles too, for

− ω2 + c2~p 2 + 2
√
~p 2 − ω2 = 0 . (4.8)

However it is easy to convince oneself that in the superluminal case c2 > 1 these lie on the
second sheet — i.e., they correspond to zeroes of the denominator in (4.6) for the other
branch of the square-root. To see this, define

z ≡
√
~p 2 − ω2 . (4.9)

Given our definition of the square root, z takes values in the right half-plane, Re(z) ≥ 0.
Now, the pole condition (4.8) reads

z2 + 2z + (c2 − 1)~p 2 = 0 , (4.10)

which for real ~p and c2 larger than one, has no solutions in the right half-plane.
The fact that there are no poles in the physical sheet of ω tells us that there are

no free solutions for π with the given boundary conditions at |y| → ∞. This is hardly
surprising, for we already know that in DGP there is no mode localized on the boundary.
Rather, four-dimensional excitations behave like resonances, “leaking” into the bulk with a
timescale of order m−1. Nevertheless, the Green’s function for π is all we need to compute
the interaction between local sources that couple to it, regardless of whether π describes
an asymptotic state of the theory.
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(a) (b)

ω ω

γ

Figure 5. The integration contours for the integral in ω, as described in the text. The branch
points are at ω = ±k ≡ ±|~p|.

The Green’s function in real space is

G(x, y) = −
∫

d4p

(2π)4

e−iωt+i~p·~x−
√
~p 2−ω2|y|

−ω2 + c2~p 2 + 2
√
~p 2 − ω2

(4.11)

To define the retarded Green’s function, we impose the condition that G vanish for t < 0.
If we integrate just above the cuts on the real ω axis, as shown in figure 5a, we can close
the contour at infinity in the upper half-plane, where we have no singularity. At infinity
the integrand behaves like

e−iωte−z|y| , (4.12)

where, as we discussed above, z has a positive real part. This means that G(x, y) vanishes
for t < 0, as desired. In conclusion, the retarded Green’s function corresponds to integrating
above the cuts in the ω plane.

We want to see what happens for t > 0. First, notice that the retarded Green’s
function vanishes in the bulk for |y| > t. This has to be expected, for we do not anticipate
any superluminal effect in the direction orthogonal to the boundary. To see that this is
indeed the case, suppose we still compute the ω-integral by closing the contour in the upper
half-plane. The integrand’s behavior is still given by (4.12), with t > 0. For fixed real ~p
and large ω in the upper half plane we have

|ω| � |~p| , Im(ω) > 0 ⇒ z → −iω
√

1− ~p 2/ω2 (4.13)

e−iωte−z|y| ∼ eiω(|y|−t) (4.14)

which decays as long as |y| > t, and we get

Gret(x, |y| > t) = 0 , (4.15)

as expected.
Notice that in the case of π, what happens in the bulk is not physically relevant, since

π is pure gauge there. More interesting, and more complicated, is the propagation parallel
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to the boundary. We focus on the y = 0 case, which corresponds to the boundary-to-
boundary propagator. First, we can integrate over the angular variables of ~p. Defining
k ≡ |~p| and r = |~x| we get

Gret(x, y = 0) = − 1
2π3

1
r

∫ ∞
0
dk k sin(kr)

∫
dω

e−iωt

−ω2 + c2k2 + 2
√
k2 − ω2

. (4.16)

Then, for t > 0, we can integrate in ω by deforming the contour in the lower half-plane
as shown in figure 5b. The contribution from infinity vanishes, and we are left with the
integral along the cuts:

Gret(x, y = 0) = − 1
2π3

1
r

∫ ∞
0
dk k sin(kr)×(∫ −k

−∞
dω +

∫ ∞
k
dω

)
e−iωt∆

[
1

−ω2 + c2k2 + 2
√
k2 − ω2

]
, (4.17)

where ∆[· · · ] denotes the discontinuity across the cut — the value above minus the value
below. For our definition of the square root, we have

k < ω <∞ ⇒
√
k2 − ω2

∣∣
above

= −iζ (4.18)√
k2 − ω2

∣∣
below

= +iζ , with ζ ∈ R+ (4.19)

−∞ < ω < −k ⇒
√
k2 − ω2

∣∣
above

= −iζ (4.20)√
k2 − ω2

∣∣
below

= +iζ , with ζ ∈ R− . (4.21)

Also
ζ2 = ω2 − k2 ⇒ ζ dζ = ω dω . (4.22)

The two ω-integrals in (4.17) thus combine to yield an integral all along the real ζ axis,

Gret(x, y = 0) = − 1
2π3

1
r

∫ ∞
0
dk k sin(kr)

∫ ∞
−∞

dζ
e−iωt

ω

4i ζ2[
ζ2−(c2−1)k2

]2+4ζ2

= − 2
π3

1
r

∫ ∞
0
dk k sin(kr)

∫ ∞
−∞

dζ
sin(ωt)
ω

ζ2[
ζ2−(c2−1)k2

]2+4ζ2
(4.23)

where for real ζ
ω = sign(ζ)

√
ζ2 + k2 , (4.24)

and in the second step we only kept the even part of the integrand under ζ → −ζ. What is
interesting about this form of Gret is that sin(ωt)/ω, as an even function of its argument,
is analytic in the whole ζ and k planes, and we do not have to worry about the cuts of ω
as a function of ζ and of k.

In the k plane, we have four poles for

k2 =
ζ2 ± 2iζ
c2 − 1

. (4.25)

However, before integrating in k we have to extend the range of integration from −∞ to
+∞, which given that the whole integrand is even in k, is straightforward. Then, in sin(kr)
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we can keep just one of the two exponentials — for instance we can perform the replacement
sin(kr)→ sin(kr)− i cos(kr) = −ieikr, which is allowed because of parity. We get

Gret(x, y = 0) =
i

π3

1
r

∫ ∞
−∞

dk

∫ ∞
−∞

dζ
sin(ωt)
ω

keikr ζ2[
ζ2 − (c2 − 1)k2

]2 + 4ζ2
. (4.26)

Now, since we are interested in studying the propagation of superluminal signals, we can
restrict to the r > t case. That is, we study the retarded Green’s function outside the
usual relativistic light-cone. In this case, we can close the contour in the upper half-plane
of k. There, at large k and fixed real ζ the integrand behaves as

ei kre±i
√
ζ2+k2 t , (4.27)

which decays for r > t. Therefore we get no contributions from infinity, but we do get two
pole contributions, from

k+ = ζ
√

1+2i/ζ
c2−1

≡ α(ζ) (4.28)

k− = −ζ
√

1−2i/ζ
c2−1

= α(−ζ) (4.29)

which for real ζ are both in the upper half-plane. Defining

β(ζ) ≡ ζ
√
c2 + 2i/ζ
c2 − 1

, (4.30)

we have

Gret(r > t, y = 0) =
i

4(c2 − 1)π2

1
r

∫ ∞
−∞

dζ

[
ζ eirα(ζ) sin(t β(ζ))

β(ζ)
+ (ζ → −ζ)

]
. (4.31)

Given the parity of the integrand in ζ, we can keep either term in brackets, modulo an
overall factor of two. We will keep the first. As before, the factor sin(t β(ζ))/β(ζ) is
analytic in the whole ζ-plane. On the other hand, α(ζ) has two branch-points,

ζ = 0 , and ζ = −2i . (4.32)

Our choice for the square root corresponds to making the branch-cut run between the two
branch-points along the imaginary axis, as shown in figure 6a.

If r > ct, we can close the contour in the upper half plane, where the integrand is
analytic. The exponential behavior at infinity is

ei rα(ζ)e±i tβ(ζ) ' exp
(

1√
c2 − 1

iζ · (r ± ct)
)

(4.33)

which decays in the upper half plane as long as r > ct:

Gret(r > ct, y = 0) = 0 . (4.34)

This shows that — as we expected — we can have superluminal signals traveling along the
boundary, but they are confined to a new light-cone, with aperture determined by c.
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(a) (b)

ζ ζ

Figure 6. The integration contours for the integral in ζ, as described in the text. The branch
points are at ζ = 0 and ζ = −2i.

As a final check that the system is well-behaved, we must make sure that inside this
new light-cone the retarded Green’s function is not exponentially increasing in time —
which would signal an instability of the vacuum upon local perturbations. This is simple
to check in the interspace between the two light-cones, i.e. for t < r < ct. In this case we
can still use (4.31). We now have to split the sine into two exponentials,

sin(βt)
β

=
1

2iβ
(
eiβt − e−iβt

)
, (4.35)

and analyze the two contributions separately. However, now for each individual contribu-
tion the analytic structure of β(ζ) matters, and we have to keep track of that as well. β(ζ)
has a branch-cut running along the imaginary axis between 0 and −2i/c2. For c2 > 1, this
is entirely contained in the branch-cut of α(ζ). Now, for the term ∼ eirα(ζ)eitβ(ζ) we can
still close the contour in the upper half-plane. The behavior at infinity is

exp
(

1√
c2 − 1

iζ · (r + ct)
)
, (4.36)

which vanishes for positive r and t. We thus get zero from this term. For the other term
we have to close the contour in the lower half-plane. We still get a vanishing contribution
from infinity as long as r < ct—as we are assuming — but upon deforming the contour as
in figure 6b, we are left with an integral along the cut:

Gret(t < r < ct, y = 0) =
1

4(c2 − 1)π2

1
r

∫ −2i

0
dζ ζ ∆

[
eiα(ζ)r−iβ(ζ)t

β(ζ)

]
, (4.37)

∝
∫ 1

0
dww∆

[
exp w√

c2−1

(
r
√

1− 1/w − t
√
c2 − 1/w

)√
c2 − 1/w

]
(4.38)

where in the second step we performed the change of variable ζ = −2i w. The question
now is whether this integral yields an exponential in time or r, with a positive real part
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y

xct1

(x, y)

speed=c

speed=1

Figure 7. Light ray traveling from the origin.

in the exponent. We can split the integration region into two intervals, 0 < w < 1/c2 and
1/c2 < w < 1. In the former, both square roots in the exponent are purely imaginary, and
we get an oscillatory contribution. In the latter interval the square-root that multiplies
r is still imaginary, but that multiplying t is real. However, our definition for the square
root has a non-negative real part in the whole complex plane. Therefore this contribution
is oscillatory in r and exponentially decaying in t.

In summary, we have shown that the retarded Green’s function for π

i) vanishes for |y| > t, i.e. there is no superluminality in the direction orthogonal to the
boundary;

ii) vanishes for y = 0 and r > ct, i.e. we have superluminality on the boundary, but we
still have a causal cone with a finite aperture;

iii) is oscillatory inside this new causal cone — at least outside the usual relativistic
light-cone — i.e. the system is stable against local perturbations.

These are exactly the properties that one would have guessed from π’s e.o.m. (4.1).

4.1 The shape of the Green’s function

To conclude this section and generalize our results above to generic positions in the bulk,
we wish to find the shape of the support of the retarded Green’s function, with source
centered at the origin. In the geometric optics approximation, its boundary at time t, as a
function of x, will be the largest y value a light ray starting at the origin can reach given
time t. We checked numerically that indeed the shape determined this way is correct. As
usual, the causal structure is determined by the high-frequency limit.
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x

x2
+ y2

= t2
x =

t

c

x = ct

y =
ct − x
√

c2
− 1

Figure 8. Shape of the support of the Green’s function at time t.

Let a light ray start at the origin and travel along the brane for a time t1 at the speed
c, reaching the point x = ct1. It then leaves the brane and travels to point (x, y) along a
straight path at a speed of 1 (see figure 7). To find the optimal time t1 for the light ray to
leave the brane, we wish to maximize y, given x and fixed total travel time t, as we vary
over t1. We have

y2 + (x− ct1)2 = (t− t1)2, (4.39)

which has a maximum at

t1 =
cx− t
c2 − 1

, y =
ct− x√
c2 − 1

. (4.40)

Thus to reach the largest y value, the light ray should travel along the brane for a time
t1 = cx−t

c2−1
, and then leave the brane and make a bee-line for the point (x, ct−x√

c2−1
). We

see that t1 → 0 at x = t
c , so at this value of x, it becomes most favorable to leave the

brane immediately.

The shape of the Green’s function is shown in figure 8. From x = t
c to x = ct, where

it is most favorable to travel down the brane a bit before leaving, it is the straight line
y = ct−x√

c2−1
. From x = 0 to x = t

c , where it is most favorable to leave the brane immediately,
it is just the circle, y2 + x2 = t2. The circle and the line intersect at x = t

c and have the
same slope there. This double teardrop shape represents the boundary of the support of the
retarded Green’s function. It expands linearly in t. It is of course rotationally symmetric
among all of the x coordinates.
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5 Discussion

Superluminality on a non-Lorentz invariant background does not imply per se a breakdown
of causality in an effective field theory. It is nevertheless a troublesome signal which may
indicate the absence of a relativistically invariant UV completion of the theory [12]. In
this paper we showed that the DGP model exhibits superluminal propagation in otherwise
physically sound backgrounds, that are exact solutions to the DGP equations. By com-
puting small fluctuations of the scalar mode around exact solutions, we made sure that
the pathology found here, which is of the same nature as that found in [12, 13], is not
an artifact of the decoupling limit M4 → ∞, Λ3 ∼ M2

5 /M4 = const. The scalar mode
couples locally to physical sources, namely to the trace of the stress-energy tensor, but
its equations of motion are non-local away from the strict decoupling limit. To be sure
that the maximum speed of propagation we found using the local limit was a real effect, we
computed the retarded Green’s function of the scalar mode and found that on the 4D brane
it is non-vanishing in an enlarged light cone. We finally showed that within this enlarged
light cone, the Green’s function is free of instabilities. This last check is important because
it proves that the effect we found is truly a maximum speed of propagation of signals that
exceeds c, instead of being a tachyon-like instability of the background.

If we take the mildly conservative point of view that any theory that possesses a
relativistically-invariant, causal completion should not allow superluminality, then we can
use the results we found to rule out significant parts of the parameter space of DGP. Indeed,
already the simple analysis presented in this paper shows that superluminality occurs when-
ever the 4D stress-energy tensor is a pure cosmological constant Tµν = −ρgµν , irrespective
of the value of ρ. Of course our analysis relies on the existence of a domain of validity for the
DGP model. DGP is after all an effective theory which gets corrected by higher-dimensional
operators at length scales L5 ∼M−1

5 .5 To carry on our analysis we need of course LDGP ∼
M2

4 /M
3
5 � L5. So, one way to escape the results of this paper is to have a 4D Planck mass

M4 not too much larger than M5. This is what one finds by trying to construct DGP as
the low-energy theory of a set of a few D-branes (or other kind of solitons) embedded in
a higher-dimensional string theory. On the other hand, a large hierarchy M4 ∼ NMs �
M5 = Ms/g

2/3
s (with Ms the string scale and gs the string coupling) might be achieved by

considering a theory with O(N) D-branes when N � 1/g2/3
s . Indeed, a hierarchy of scales

between M4 and the UV cutoff in a theory with many species is a universal result that
holds well beyond the DGP context [18]. In this particular realization the DGP scale is

LDGP ∼
M2

4

M3
5

∼ N2g2
s

Ms
. (5.1)

For our analysis to be valid we need LDGP � 1/Ms, that is

Ngs � 1 . (5.2)

5 Strictly speaking, there is a longer strong-coupling scale in the π sector of the theory, Λ−1
3 ∼M4/M

2
5 �

L5 [6]. Nevertheless, classical solutions with (extrinsic) curvature in the strong-coupling regime are not

necessarily outside the regime of validity of the effective theory [8].
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In this case, the effective DGP action breaks down whenever curvatures are of order
of the string scale. The tension of the D-brane arrangement — the four-dimensional
cosmological constant energy density, ρ,—has a classical contribution of order NM4

s /gs,
and a quantum-mechanical one of order N2M4

s . However for the latter we may hope for
cancellations due to supersymmetry, so let us ignore it. The intrinsic curvature of the
D-brane system can be small in our limit

R ∼ ρ

M2
4

∼ M2
s

Ngs
�M2

s . (5.3)

Still, the extrinsic curvature is always large,

Kµν ∼
ρ

M3
5

∼ NgsMs �Ms , (5.4)

thus signaling a breakdown of the effective field theory. In estimating the extrinsic curva-
ture we used Israel’s junction condition. In principle, there could be a cancellation between
the localized DGP term and the cosmological constant, but in general we do not expect
such a cancellation of the leading contribution (5.4). Indeed, such a cancellation does not
take place for the solutions discussed in sections 3.1, 3.2, where the extrinsic curvature is al-
ways of order ρ/M3

5 . This is good, because those solutions are stable and have superluminal
excitations — which we do not expect in a consistent D-brane arrangement in string-theory.

In conclusion, in this simple construction there is no choice for the values of N and
gs yielding a consistent DGP effective theory, where both the DGP crossover scale and
the curvature radii are longer than the cutoff. There is one dimensionless parameter, Ngs,
controlling both how much longer than the cutoff LDGP is, and how much shorter than the
cutoff the radius of curvature is. The results of this paper suggest that this obstruction may
be generic and model-independent. In other words, it may be that the parameter space of
DGP-like models that can be obtained from UV-complete theories is smaller than the space
determined by demanding self-consistency of the effective field theory. Within that sub-
space, we expect to find no solution with pathologies like superluminal signal propagation.
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